Geometric Theory of Parshin Residues

نویسنده

  • Mikhail Mazin
چکیده

This is a brief summary of results. More detailed papers are in preparation. Preliminary versions of the detailed papers are available on the arxiv.org ([MM1],[MM2]). We study the theory of Parshin residues from the geometric point of view. In particular, the residue is expressed in terms of an integral over a smooth cycle. Parshin-Lomadze Reciprocity Law for residues in complex case is proved via a homological relation on these cycles. The paper consist of two parts. In the rst part the theory of Leray coboundary operators for strati ed spaces is developed. These operators are used to construct the cycle and prove the homological relation. In the second part resolution of singularities techniques are applied to study local geometry near a complete ag of subvarieties. We give a short introduction to the theory of Parshin residues in the Introduction. All the constructions are valid both in complex algebraic and complex analytic cases. However, for simplicity of presentation we restrict ourselves to the algebraic case. R esum e Ceci est un bref r esum e de r esultats. Des articles plus d etaill es sont en pr eparation. Des versions pr eliminaires de ces articles sont disponibles sur arxiv.org ([MM1],[MM2]). Nous etudions la th eorie des r esidus de Parshin d'un point de vue g eom etrique. En particulier, le r esidu est exprim e sous la forme d'une int egrale sur un cycle lisse, et la Loi de R eciprocit e de Parshin-Lomadze pour les r esidus dans le cas complexe est d emontr ee par l'interm ediaire d'une relation homologique sur ces cycles. Cet article comporte deux parties. Dans la premi ere la th eorie des op erateurs de cobords pour espaces strati es est d evelopp ee et est utilis ee pour construire le cycle et d emontrer la relation d'homologie. Dans la seconde partie, les techniques de r esolution de singularit es sont utilis ees pour etudier la g eom etrie locale pr es d'un drapeau complet de sous-vari et es. Nous donnons une courte introduction a la th eorie des r esidus de Parshin dans l'Introduction. Toutes les constructions sont valables dans le cas alg ebrique complexe et dans le cas analytique complexe . Cependant pour la simplicit e de l'expos e on s'est restreint au cas alg ebrique.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Categorical Proof of the Parshin Reciprocity Laws on Algebraic Surfaces

We define and study the 2-category of torsors over a Picard groupoid, a central extension of a group by a Picard groupoid, and commutator maps in this central extension. Using this in the context of two-dimensional local fields and two-dimensional adèle theory we obtain the two-dimensional tame symbol and a new proof of Parshin reciprocity laws on an algebraic surface.

متن کامل

Harmonic analysis on local fields and adelic spaces I

We develop a harmonic analysis on objects of some category C 2 of infinite-dimensional filtered vector spaces over a finite field. It includes two-dimensional local fields and adelic spaces of algebraic surfaces defined over a finite field. The main result is the theory of the Fourier transform on these objects and two-dimensional Poisson formulas.

متن کامل

2 00 7 Harmonic analysis on local fields and adelic spaces I

We develop a harmonic analysis on objects of some category C 2 of infinite-dimensional filtered vector spaces over a finite field. It includes two-dimensional local fields and adelic spaces of algebraic surfaces defined over a finite field. The main result is the theory of the Fourier transform on these objects and two-dimensional Poisson formulas.

متن کامل

A Mechatronic Slip Robotic System with Adaptive

The paper considers technological features of erecting monolith objects with a variable cross-section, presents the formulated requirements to the mechatronic complex and the principles of its construction and gives the complex structure. Great attention is paid to the problems of the mechatronic complex movements planning taking into account restrictions on control and disturbing influences af...

متن کامل

A Note on the First Geometric-Arithmetic Index of Hexagonal Systems and Phenylenes

The first geometric-arithmetic index was introduced in the chemical theory as the summation of 2 du dv /(du  dv ) overall edges of the graph, where du stand for the degree of the vertex u. In this paper we give the expressions for computing the first geometric-arithmetic index of hexagonal systems and phenylenes and present new method for describing hexagonal system by corresponding a simple g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010